А   Б  В  Г  Д  Е  Є  Ж  З  І  Ї  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Ю  Я 


Променевої критерій

Променеві критерії Qs і Q4 тісно пов'язані між собою (Q4 звичайно трохи більше) і повністю взаємозамінні.

Для інших променевих критеріїв такої екстремальної опорної точки знайти не вдається, тому їх також обчислюють відносно центра ваги променевої діаграми. Так як хвильова аберація симетрична щодо меридіональної площині, центр ваги променевої діаграми розсіювання, як і дифракційну фокус, повинен перебувати в цій площині.

Встановимо зв'язок променевих критеріїв з характеристиками аберрірованной сферичної хвилі, що формується оптичною системою.

У виразах (316) променеві критерії обчислені щодо точки гауссова зображення.

Таким чином, променеві критерії дозволяють достовірно оцінювати якість зображення і вимагають для свого отримання мінімального обсягу обчислень. В силу цього використання променевих критеріїв при розрахунку оптичних систем цілком обгрунтовано і доцільно.

На закінчення наведемо результати дослідження залежності одержуваних значень променевих критеріїв від числа простежуються променів, так як саме променеві критерії призначені для оптимізації оптичних систем і, отже, їх чутливість до числа променів важлива в першу чергу.

Необхідно вирішити питання про вибір опорної точки при обчисленні променевих критеріїв.

По-друге, з табл. 3.1 випливає, що при оптимізації систем можна обмежитися розрахунком променевих критеріїв по 25 - 50 променів, в результаті чого трудомісткість їх обчислення стає цілком прийнятною.

На закінчення наведемо результати дослідження залежності одержуваних значень променевих критеріїв від числа простежуються променів, так як саме променеві критерії призначені для оптимізації оптичних систем і, отже, їх чутливість до числа променів важлива в першу чергу.

Залежність критеріїв D і С. 4 від концентрації енергії в межах диска Ейрі для аберації L4 (сума сферичної аберації третього порядку і другий сферичної аберації п'ятого порядку. Чисельні значення критеріїв для окремих аберацій (рис. 3.2) дозволяють припускати, що інтенсивність Штреля погано корелює з променевими критеріями.

Таким чином, променеві критерії дозволяють достовірно оцінювати якість зображення і вимагають для свого отримання мінімального обсягу обчислень. у силу цього використання променевих критеріїв при розрахунку оптичних систем цілком обгрунтовано і доцільно.

Qi - Q4 в повній відповідності з (316 ): інтегрування в цьому випадку заміняють на кінцеве підсумовування по променям, але таку заміну виробляють при будь-якому чисельному інтегруванні, і в цьому сенсі обчислення променевих критеріїв нічим не відрізняється від обчислення інтенсивності Штреля або відносної енергії.